rtfin_logo

Jump to: fMRI EEG fNIRS MEG Mixed

fMRI

  • 🚨  Zilverstand, A., Sorger, B., Slaats-Willemse, D., Kan, C. C., Goebel, R., and Buitelaar, J. K. (2017). fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study. PLoS One, 12(1), e0170795.
  • 🚨  Cortese, A., Amano, K., Koizumi, A., Lau, H., and Kawato, M. (2017). Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants. NeuroImage, 149, 323–337.
  • 🚨  Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., … others. (2017). The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real-time fMRI neurofeedback. Human Brain Mapping, 38(1), 541–560.
  • 🚨  McDonald, A. R., Muraskin, J., Van Dam, N. T., Froehlich, C., Puccio, B., Pellman, J., … others. (2017). The real-time fMRI neurofeedback based stratification of Default Network Regulation Neuroimaging data repository. NeuroImage, 146, 157–170.
  • 🚨  Lorenz, R., Violante, I. R., Monti, R. P., Montana, G., Hampshire, A., and Leech, R. (2017). Dissociating frontoparietal brain networks with neuroadaptive Bayesian optimization. BioRxiv, 128678.
  • 🚨  Lorenz, R., Hampshire, A., and Leech, R. (2017). Neuroadaptive Bayesian optimization and hypothesis testing. Trends in Cognitive Sciences.
  • 🚨  Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., and Haller, S. (2017). Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI-A pilot study. NeuroImage: Clinical.
  • 🚨  Habes, I., Rushton, S., Johnston, S. J., Sokunbi, M. O., Barawi, K., Brosnan, M., … Linden, D. E. J. (2016). fMRI neurofeedback of higher visual areas and perceptual biases. Neuropsychologia, 85, 208–215.
  • 🚨  Radua, J., Stoica, T., Scheinost, D., Pittenger, C., and Hampson, M. (2016). Neural correlates of success and failure signals during neurofeedback learning. Neuroscience.
  • 🚨  Dyck, M. S., Mathiak, K. A., Bergert, S., Sarkheil, P., Koush, Y., Alawi, E. M., … Mathiak, K. (2016). Targeting treatment-resistant auditory verbal hallucinations in schizophrenia with fMRI-based neurofeedback–exploring different cases of schizophrenia. Frontiers in Psychiatry, 7.
  • 🚨  Ramot, M., Grossman, S., Friedman, D., and Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Proceedings of the National Academy of Sciences, 201516857.
  • 🚨  Marxen, M., Jacob, M. J., Müller, D. K., Posse, S., Ackley, E., Hellrung, L., … Smolka, M. N. (2016). Amygdala regulation following fmri-neurofeedback without instructed strategies. Frontiers in Human Neuroscience, 10.
  • 🚨  Ihssen, N., Sokunbi, M. O., Lawrence, A. D., Lawrence, N. S., and Linden, D. E. J. (2016). Neurofeedback of visual food cue reactivity: a potential avenue to alter incentive sensitization and craving. Brain Imaging and Behavior, 1–10.
  • 🚨  Emmert, K., Breimhorst, M., Bauermann, T., Birklein, F., Rebhorn, C., Van De Ville, D., and Haller, S. (2016). Active pain coping is associated with the response in real-time fMRI neurofeedback during pain. Brain Imaging and Behavior, 1–10.
  • 🚨  Fovet, T., Orlov, N., Dyck, M., Allen, P., Mathiak, K., and Jardri, R. (2016). Translating neurocognitive models of auditory-verbal hallucinations into therapy: using real-time fMRI-neurofeedback to treat voices. Frontiers in Psychiatry, 7.
  • 🚨  Gerin, M. I., Fichtenholtz, H., Roy, A., Walsh, C. J., Krystal, J. H., Southwick, S., and Hampson, M. (2016). Real-time fMRI neurofeedback with war veterans with chronic PTSD: a feasibility study. Frontiers in Psychiatry, 7.
  • 🚨  Liew, S.-L., Rana, M., Cornelsen, S., Fortunato de Barros Filho, M., Birbaumer, N., Sitaram, R., … Soekadar, S. R. (2016). Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabilitation and Neural Repair, 30(7), 671–675.
  • 🚨  Hamilton, J. P., Glover, G. H., Bagarinao, E., Chang, C., Mackey, S., Sacchet, M. D., and Gotlib, I. H. (2016). Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder. Psychiatry Research: Neuroimaging, 249, 91–96.
  • 🚨  Amano, K., Shibata, K., Kawato, M., Sasaki, Y., and Watanabe, T. (2016). Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback. Current Biology, 26(14), 1861–1866.
  • 🚨  Cortese, A., Amano, K., Koizumi, A., Kawato, M., and Lau, H. (2016). Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance. Nature Communications, 7.
  • 🚨  Koizumi, A., Amano, K., Cortese, A., Shibata, K., Yoshida, W., Seymour, B., … Lau, H. (2016). Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure. Nature Human Behaviour, 1, 0006.
  • 🚨  Nakazawa, E., Yamamoto, K., Tachibana, K., Toda, S., Takimoto, Y., and Akabayashi, A. (2016). Ethics of decoded neurofeedback in clinical research, treatment, and moral enhancement. AJOB Neuroscience, 7(2), 110–117.
  • 🚨  Paret, C., Ruf, M., Gerchen, M. F., Kluetsch, R., Demirakca, T., Jungkunz, M., … Ende, G. (2016). fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal–limbic brain connectivity. NeuroImage, 125, 182–188.
  • Hartwell, K. J., Hanlon, C. A., Li, X., Borckardt, J. J., Canterberry, M., Prisciandaro, J. J., … Brady, K. T. (2016). Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers. Journal of Psychiatry & Neuroscience: JPN, 41(1), 48.
  • Li, Z., Tong, L., Guan, M., He, W., Wang, L., Bu, H., … Yan, B. (2016). Altered Resting-State Amygdala Functional Connectivity after Real-Time fMRI Emotion Self-Regulation Training. BioMed Research International, 2016.
  • Sherwood, M. S., Kane, J. H., Weisend, M. P., and Parker, J. G. (2016). Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice. NeuroImage, 124, 214–223.
  • Kadosh, K. C., Luo, Q., de Burca, C., Sokunbi, M. O., Feng, J., Linden, D. E. J., and Lau, J. Y. F. (2016). Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. NeuroImage, 125, 616–626.
  • Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., … others. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124, 806–812.
  • Paret, C., Ruf, M., Gerchen, M. F., Kluetsch, R., Demirakca, T., Jungkunz, M., … Ende, G. (2016). fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal–limbic brain connectivity. NeuroImage, 125, 182–188.
  • MacInnes, J. J., Dickerson, K. C., Chen, N.-kuei, and Adcock, R. A. (2016). Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation. Neuron, 89(6), 1331–1342.
  • Lorenz, R., Monti, R. P., Violante, I. R., Anagnostopoulos, C., Faisal, A. A., Montana, G., and Leech, R. (2016). The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI. NeuroImage, 129, 320–334.
  • 🚨  Kopel, R., Emmert, K., Scharnowski, F., Haller, S., and Van De Ville, D. (2016). Distributed patterns of brain activity underlying real-time fMRI neurofeedback training. IEEE Transactions on Biomedical Engineering.
  • 🚨  Paret, C., Kluetsch, R., Zaehringer, J., Ruf, M., Demirakca, T., Bohus, M., … Schmahl, C. (2016). Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients. Social Cognitive and Affective Neuroscience, 11(6), 952–960.
  • Auer, T., Schweizer, R., and Frahm, J. (2015). Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects. Frontiers in Human Neuroscience, 9.
  • Moeller, S. J., Konova, A. B., and Goldstein, R. Z. (2015). Multiple ambiguities in the measurement of drug craving. Addiction, 110(2), 205–206.
  • Farkas, A., Bluschke, A., Roessner, V., and Beste, C. (2015). Neurofeedback and its possible relevance for the treatment of Tourette syndrome. Neuroscience & Biobehavioral Reviews, 51, 87–99.
  • Scharnowski, F., and Weiskopf, N. (2015). Cognitive enhancement through real-time fMRI neurofeedback. Current Opinion in Behavioral Sciences, 4, 122–127.
  • Mishra, J., and Gazzaley, A. (2015). Closed-loop cognition: the next frontier arrives. Trends in Cognitive Sciences, 19(5), 242–243.
  • Cisler, J. M., Bush, K., James, G. A., Smitherman, S., and Kilts, C. D. (2015). Decoding the traumatic memory among women with PTSD: implications for neurocircuitry models of PTSD and real-time fMRI neurofeedback. PloS One, 10(8), e0134717.
  • Feng, I. J., Jack, A. I., and Tatsuoka, C. (2015). Dynamic adjustment of stimuli in real time functional magnetic resonance imaging. PloS One, 10(3), e0117942.
  • Lee, D., Jang, C., and Park, H.-J. (2015). Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification. NeuroImage, 108, 203–213.
  • Misaki, M., Barzigar, N., Zotev, V., Phillips, R., Cheng, S., and Bodurka, J. (2015). Real-time fMRI processing with physiological noise correction–Comparison with off-line analysis. Journal of Neuroscience Methods, 256, 117–121.
  • Reichert, C., Fendrich, R., Bernarding, J., Tempelmann, C., Hinrichs, H., and Rieger, J. W. (2015). Online tracking of the contents of conscious perception using real-time fMRI. Probing Auditory Scene Analysis, 69.
  • Zilverstand, A., Sorger, B., Sarkheil, P., and Goebel, R. (2015). fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience, 9.
  • Kirsch, M., Gruber, I., Ruf, M., Kiefer, F., and Kirsch, P. (2015). Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli. Addiction Biology.
  • Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., … Weiskopf, N. (2015). Manipulating motor performance and memory through real-time fMRI neurofeedback. Biological Psychology, 108, 85–97.
  • Megumi, F., Yamashita, A., Kawato, M., and Imamizu, H. (2015). Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Frontiers in Human Neuroscience, 9, 160.
  • Cordes, J. S., Mathiak, K. A., Dyck, M., Alawi, E. M., Gaber, T. J., Zepf, F. D., … Mathiak, K. (2015). Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia. Frontiers in Behavioral Neuroscience, 9.
  • Kim, D.-Y., Yoo, S.-S., Tegethoff, M., Meinlschmidt, G., and Lee, J.-H. (2015). The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings. Journal of Cognitive Neuroscience.
  • Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., … Scharnowski, F. (2015). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, bhv311.
  • Gröne, M., Dyck, M., Koush, Y., Bergert, S., Mathiak, K. A., Alawi, E. M., … Mathiak, K. (2015). Upregulation of the rostral anterior cingulate cortex can alter the perception of emotions: fMRI-based neurofeedback at 3 and 7 T. Brain Topography, 28(2), 197–207.
  • Karch, S., Keeser, D., Hümmer, S., Paolini, M., Kirsch, V., Karali, T., … others. (2015). Modulation of craving related brain responses using real-time fMRI in patients with alcohol use disorder. PloS One, 10(7), e0133034.
  • Schnyer, D. M., Beevers, C. G., Sherman, S. M., Cohen, J. D., Norman, K. A., Turk-Browne, N. B., and others. (2015). Neurocognitive therapeutics: from concept to application in the treatment of negative attention bias. Biology of Mood & Anxiety Disorders, 5(1), 1.
  • deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A., Turk-Browne, N. B., and others. (2015). Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 18(3), 470–475.
  • Harmelech, T., Friedman, D., and Malach, R. (2015). Differential magnetic resonance neurofeedback modulations across extrinsic (visual) and intrinsic (default-mode) nodes of the human cortex. The Journal of Neuroscience, 35(6), 2588–2595.
  • Baecke, S., Lützkendorf, R., Mallow, J., Luchtmann, M., Tempelmann, C., Stadler, J., and Bernarding, J. (2015). A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation. Scientific Reports, 5, 8413.
  • Blefari, M. L., Sulzer, J., Hepp-Reymond, M.-C., Kollias, S., and Gassert, R. (2015). Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery. Frontiers in Behavioral Neuroscience, 9, 18.
  • Caria, A., and de Falco, S. (2015). Anterior insular cortex regulation in autism spectrum disorders. Frontiers in Behavioral Neuroscience, 9, 38.
  • Shen, J., Zhang, G., Yao, L., and Zhao, X. (2015). Real-time fMRI training-induced changes in regional connectivity mediating verbal working memory behavioral performance. Neuroscience, 289, 144–152.
  • Sarkheil, P., Zilverstand, A., Kilian-Hütten, N., Schneider, F., Goebel, R., and Mathiak, K. (2015). fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behavioural Brain Research, 281, 326–332.
  • Guan, M., Ma, L., Li, L., Yan, B., Zhao, L., Tong, L., … Shi, D. (2015). Self-regulation of brain activity in patients with postherpetic neuralgia: a double-blind randomized study using real-time FMRI neurofeedback. PloS One, 10(4), e0123675.
  • Zhang, Q., Zhang, G., Yao, L., and Zhao, X. (2015). Impact of real-time fMRI working memory feedback training on the interactions between three core brain networks. Frontiers in Behavioral Neuroscience, 9.
  • Marins, T. F., Rodrigues, E. C., Engel, A., Hoefle, S., Basilio, R., Lent, R., … Tovar-Moll, F. (2015). Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex. Frontiers in Behavioral Neuroscience, 9.
  • Liew, S.-L., Rana, M., Cornelsen, S., de Barros Filho, M. F., Birbaumer, N., Sitaram, R., … Soekadar, S. R. (2015). Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 1545968315619699.
  • Buyukturkoglu, K., Roettgers, H., Sommer, J., Rana, M., Dietzsch, L., Arikan, E. B., … others. (2015). Self-regulation of anterior insula with real-time fMRI and its behavioral effects in obsessive-compulsive disorder: a feasibility study. PloS One, 10(8), e0135872.
  • Hui, M., Zhang, H., Ge, R., Yao, L., and Long, Z. (2014). Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Neuropsychologia, 62, 111–123.
  • Li, X., Yao, L., Ye, Q., and Zhao, X. (2014). Online Spatial Normalization for Real-Time fMRI. PloS One, 9(7), e103302.
  • Leeds, D. D., Pyles, J. A., and Tarr, M. J. (2014). Exploration of complex visual feature spaces for object perception. Frontiers in Computational Neuroscience, 8, 106.
  • Scheinost, D., Stoica, T., Wasylink, S., Gruner, P., Saksa, J., Pittenger, C., and Hampson, M. (2014). Resting state functional connectivity predicts neurofeedback response. Frontiers in Behavioral Neuroscience, 8, 338.
  • Emmert, K., Breimhorst, M., Bauermann, T., Birklein, F., Van De Ville, D., and Haller, S. (2014). Comparison of anterior cingulate vs. insular cortex as targets for real-time fMRI regulation during pain stimulation. Frontiers in Behavioral Neuroscience, 8, 350.
  • Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., and Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connectivity, 4(9), 690–701.
  • Sokunbi, M. O., Linden, D. E. J., Habes, I., Johnston, S., and Ihssen, N. (2014). Real-time fMRI brain-computer interface: development of a “motivational feedback” subsystem for the regulation of visual cue reactivity. Frontiers in Behavioral Neuroscience, 8, 392.
  • Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., and Sitaram, R. (2014). Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks. Biological Psychology, 95, 4–20.
  • Greer, S. M., Trujillo, A. J., Glover, G. H., and Knutson, B. (2014). Control of nucleus accumbens activity with neurofeedback. NeuroImage, 96, 237–244.
  • Moll, J., Weingartner, J. H., Bado, P., Basilio, R., Sato, J. R., Melo, B. R., … Zahn, R. (2014). Voluntary enhancement of neural signatures of affiliative emotion using FMRI neurofeedback. PloS One, 9(5), e97343.
  • Sitaram, R., Caria, A., Veit, R., Gaber, T., Ruiz, S., and Birbaumer, N. (2014). Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: a pilot study. Frontiers in Behavioral Neuroscience, 8, 344.
  • Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., and Bodurka, J. (2014). Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PloS One, 9(2), e88785.
  • Scharnowski, F., Rosa, M. J., Golestani, N., Hutton, C., Josephs, O., Weiskopf, N., and Rees, G. (2014). Connectivity changes underlying neurofeedback training of visual cortex activity. PloS One, 9(3), e91090.
  • Linden, D. E. J. (2014). Neurofeedback and networks of depression. Dialogues in Clinical Neuroscience, 16(1), 103.
  • Goebel, R., and Linden, D. (2014). Neurofeedback with real-time functional MRI. In MRI in Psychiatry, pages 35–46. Springer.
  • Cohen, O., Druon, S., Lengagne, S., Mendelsohn, A., Malach, R., Kheddar, A., and Friedman, D. (2014). fMRI-based robotic embodiment: Controlling a humanoid robot by thought using real-time fMRI. PRESENCE: Teleoperators and Virtual Environments, 23(3), 229–241.
  • Hinds, O., Wighton, P., Dylan Tisdall, M., Hess, A., Breiter, H., and Kouwe, A. (2014). Neurofeedback using functional spectroscopy. International Journal of Imaging Systems and Technology, 24(2), 138–148.
  • Magland, J. F., and Childress, A. R. (2014). Task-Correlated Facial and Head Movements in Classifier-Based Real-Time fMRI. Journal of Neuroimaging, 24(4), 371–378.
  • Budde, J., Shajan, G., Zaitsev, M., Scheffler, K., and Pohmann, R. (2014). Functional MRI in human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magnetic Resonance in Medicine, 71(1), 209–218.
  • Stoeckel, L. E., Garrison, K. A., Ghosh, S. S., Wighton, P., Hanlon, C. A., Gilman, J. M., … others. (2014). Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage: Clinical, 5, 245–255.
  • Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., and Sitaram, R. (2014). Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks. Biological Psychology, 95, 4–20.
  • Zilverstand, A., Sorger, B., Zimmermann, J., Kaas, A., and Goebel, R. (2014). Windowed correlation: a suitable tool for providing dynamic fMRI-based functional connectivity neurofeedback on task difficulty. PLoS One, 9(1), e85929.
  • Mendelsohn, A., Pine, A., and Schiller, D. (2014). Between thoughts and actions: motivationally salient cues invigorate mental action in the human brain. Neuron, 81(1), 207–217.
  • Brühl, A. B., Scherpiet, S., Sulzer, J., Stämpfli, P., Seifritz, E., and Herwig, U. (2014). Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study. Brain Topography, 27(1), 138–148.
  • Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., and Paulus, W. (2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. Neuroimage, 85, 1040–1047.
  • Koush, Y., Elliott, M. A., Scharnowski, F., and Mathiak, K. (2014). Comparison of Real-Time Water Proton Spectroscopy and Echo-Planar Imaging Sensitivity to the BOLD Effect at 3 T and at 7 T. PloS One, 9(3), e91620.
  • Rance, M., Ruttorf, M., Nees, F., Schad, L. R., and Flor, H. (2014). Real time fMRI feedback of the anterior cingulate and posterior insular cortex in the processing of pain. Human Brain Mapping, 35(12), 5784–5798.
  • Can, D. D., Richards, T., and Kuhl, P. K. (2013). Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study. Brain and Language, 124(1), 34–44.
  • Scheinost, D., Hampson, M., Qiu, M., Bhawnani, J., Constable, R. T., and Papademetris, X. (2013). A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI. Neuroinformatics, 11(3), 291–300.
  • Koush, Y., Elliott, M. A., Scharnowski, F., and Mathiak, K. (2013). Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T. Journal of Neuroscience Methods, 218(2), 148–160.
  • Scheinost, D., Hampson, M., Qiu, M., Bhawnani, J., Constable, R. T., and Papademetris, X. (2013). A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI. Neuroinformatics, 11(3), 291–300.
  • Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., … others. (2013). Real-time fMRI neurofeedback: progress and challenges. Neuroimage, 76, 386–399.
  • Lohmann, G., Stelzer, J., Neumann, J., Ay, N., and Turner, R. (2013). “More is different” in functional magnetic resonance imaging: a review of recent data analysis techniques. Brain Connectivity, 3(3), 223–239.
  • Seitz, A. R. (2013). Cognitive neuroscience: targeting neuroplasticity with neural decoding and biofeedback. Current Biology, 23(5), R210–R212.
  • Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., … Gassert, R. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. Neuroimage, 83, 817–825.
  • Ruiz, S., Lee, S., Soekadar, S. R., Caria, A., Veit, R., Kircher, T., … Sitaram, R. (2013). Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Human Brain Mapping, 34(1), 200–212.
  • Rana, M., Gupta, N., Lee, S., and others. (2013). A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals. Frontiers in Neuroscience, 7, 170.
  • Garrison, K. A., Scheinost, D., Worhunsky, P. D., Elwafi, H. M., Thornhill, T. A., Thompson, E., … others. (2013). Real-time fMRI links subjective experience with brain activity during focused attention. Neuroimage, 81, 110–118.
  • Brewer, J. A., Garrison, K. A., and Whitfield-Gabrieli, S. (2013). What about the “self” is processed in the posterior cingulate cortex?
  • Berman, B. D., Horovitz, S. G., and Hallett, M. (2013). Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback. Frontiers in Human Neuroscience, 7, 638.
  • Müller, K., Bacht, K., Prochnow, D., Schramm, S., and Seitz, R. J. (2013). Activation of thalamus in motor imagery results from gating by hypnosis. Neuroimage, 66, 361–367.
  • Koush, Y., Rosa, M. J., Robineau, F., Heinen, K., Rieger, S. W., Weiskopf, N., … Scharnowski, F. (2013). Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI. Neuroimage, 81, 422–430.
  • Buckner, R. L., Krienen, F. M., and Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.
  • Zheng, W., Ackley, E. S., Martı́nez-Ramón Manel, and Posse, S. (2013). Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas. Magnetic Resonance Imaging, 31(2), 247–261.
  • Soldati, N., Calhoun, V. D., Bruzzone, L., and Jovicich, J. (2013). ICA analysis of fMRI with real-time constraints: an evaluation of fast detection performance as function of algorithms, parameters and a priori conditions. Frontiers in Human Neuroscience, 7, 19.
  • Feis, D.-L., Brodersen, K. H., von Cramon, D. Y., Luders, E., and Tittgemeyer, M. (2013). Decoding gender dimorphism of the human brain using multimodal anatomical and diffusion MRI data. Neuroimage, 70, 250–257.
  • Papageorgiou, T. D., Lisinski, J. M., McHenry, M. A., White, J. P., and LaConte, S. M. (2013). Brain–computer interfaces increase whole-brain signal to noise. Proceedings of the National Academy of Sciences, 110(33), 13630–13635.
  • Andersson, P., Pluim, J. P. W., Viergever, M. A., and Ramsey, N. F. (2013). Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI. Brain Topography, 26(1), 177–185.
  • Hinds, O., Thompson, T. W., Ghosh, S., Yoo, J. J., Whitfield-Gabrieli, S., Triantafyllou, C., and Gabrieli, J. D. E. (2013). Roles of default-mode network and supplementary motor area in human vigilance performance: evidence from real-time fMRI. Journal of Neurophysiology, 109(5), 1250–1258.
  • Andersson, P., Pluim, J. P. W., Viergever, M. A., and Ramsey, N. F. (2013). Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI. Brain Topography, 26(1), 177–185.
  • Koush, Y., Zvyagintsev, M., Dyck, M., Mathiak, K. A., and Mathiak, K. (2012). Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI. Neuroimage, 59(1), 478–489.
  • Zang, Z.-X., Yan, C.-G., Dong, Z.-Y., Huang, J., and Zang, Y.-F. (2012). Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426.
  • Eklund, A., Andersson, M., Josephson, C., Johannesson, M., and Knutsson, H. (2012). Does parametric fMRI analysis with SPM yield valid results?—An empirical study of 1484 rest datasets. NeuroImage, 61(3), 565–578.
  • Boynton, G. M., Engel, S. A., and Heeger, D. J. (2012). Linear systems analysis of the fMRI signal. NeuroImage, 62(2), 975–984.
  • van Gelderen, P., Duyn, J. H., Ramsey, N. F., Liu, G., and Moonen, C. T. W. (2012). The PRESTO technique for fMRI. Neuroimage, 62(2), 676–681.
  • Posse, S. (2012). Multi-echo acquisition. Neuroimage, 62(2), 665–671.
  • Posse, S., Ackley, E., Mutihac, R., Rick, J., Shane, M., Murray-Krezan, C., … Speck, O. (2012). Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging. Neuroimage, 61(1), 115–130.
  • Smith, S. M. (2012). The future of FMRI connectivity. Neuroimage, 62(2), 1257–1266.
  • Guillot, A., Di Rienzo, F., MacIntyre, T., Moran, A., and Collet, C. (2012). Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Frontiers in Human Neuroscience, 6, 247.
  • Johnson, K. A., Hartwell, K., LeMatty, T., Borckardt, J., Morgan, P. S., Govindarajan, K., … George, M. S. (2012). Intermittent “Real-time” fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. Journal of Neuroimaging, 22(1), 58–66.
  • Caria, A., Sitaram, R., and Birbaumer, N. (2012). Real-time fMRI: a tool for local brain regulation. The Neuroscientist, 18(5), 487–501.
  • Frank, S., Lee, S., Preissl, H., Schultes, B., Birbaumer, N., and Veit, R. (2012). The obese brain athlete: self-regulation of the anterior insula in adiposity. PLoS One, 7(8), e42570.
  • Donahue, M. J., Hoogduin, H., Smith, S. M., Siero, J. C. W., Chappell, M., Petridou, N., … Hendrikse, J. (2012). Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study. Human Brain Mapping, 33(3), 511–522.
  • Cohen, O., Druon, S., Lengagne, S., Mendelsohn, A., Malach, R., Kheddar, A., and Friedman, D. (2012). fMRI robotic embodiment: a pilot study. In Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, pages 314–319. IEEE.
  • Minati, L., Nigri, A., Rosazza, C., and Bruzzone, M. G. (2012). Thoughts turned into high-level commands: Proof-of-concept study of a vision-guided robot arm driven by functional MRI (fMRI) signals. Medical Engineering & Physics, 34(5), 650–658.
  • Sorger, B., Reithler, J., Dahmen, B., and Goebel, R. (2012). A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Current Biology, 22(14), 1333–1338.
  • Anderson, A., Han, D., Douglas, P. K., Bramen, J., and Cohen, M. S. (2012). Real-time functional MRI classification of brain states using markov-svm hybrid models: peering inside the rt-fMRI black box. In Machine learning and interpretation in neuroimaging, pages 242–255. Springer.
  • Chiew, M., LaConte, S. M., and Graham, S. J. (2012). Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage, 61(1), 21–31.
  • Coutanche, M. N., and Thompson-Schill, S. L. (2012). The advantage of brief fMRI acquisition runs for multi-voxel pattern detection across runs. Neuroimage, 61(4), 1113–1119.
  • Weygandt, M., Blecker, C. R., Schäfer, A., Hackmack, K., Haynes, J.-D., Vaitl, D., … Schienle, A. (2012). fMRI pattern recognition in obsessive–compulsive disorder. Neuroimage, 60(2), 1186–1193.
  • Chapin, H., Bagarinao, E., and Mackey, S. (2012). Real-time fMRI applied to pain management. Neuroscience Letters, 520(2), 174–181.
  • McCarthy-Jones, S. (2012). Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia? Schizophrenia Bulletin, sbs006.
  • Sitaram, R., Veit, R., Stevens, B., Caria, A., Gerloff, C., Birbaumer, N., and Hummel, F. (2012). Acquired control of ventral premotor cortex activity by feedback training an exploratory real-time fMRI and TMS study. Neurorehabilitation and Neural Repair, 26(3), 256–265.
  • Stephan, K. E., and Roebroeck, A. (2012). A short history of causal modeling of fMRI data. Neuroimage, 62(2), 856–863.
  • Lee, J.-H., Kim, J., and Yoo, S.-S. (2012). Real-time fMRI-based neurofeedback reinforces causality of attention networks. Neuroscience Research, 72(4), 347–354.
  • Magri, C., Schridde, U., Murayama, Y., Panzeri, S., and Logothetis, N. K. (2012). The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. Journal of Neuroscience, 32(4), 1395–1407.
  • Mandeville, J. B. (2012). IRON fMRI measurements of CBV and implications for BOLD signal. Neuroimage, 62(2), 1000–1008.
  • Bullmore, E. (2012). The future of functional MRI in clinical medicine. Neuroimage, 62(2), 1267–1271.
  • Bandettini, P. A. (2012). Twenty years of functional MRI: the science and the stories. Neuroimage, 62(2), 575–588.
  • Jezzini, A., Caruana, F., Stoianov, I., Gallese, V., and Rizzolatti, G. (2012). Functional organization of the insula and inner perisylvian regions. Proceedings of the National Academy of Sciences, 109(25), 10077–10082.
  • Buch, E. R., Shanechi, A. M., Fourkas, A. D., Weber, C., Birbaumer, N., and Cohen, L. G. (2012). Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain, awr331.
  • Van De Ville, D., Jhooti, P., Haas, T., Kopel, R., Lovblad, K.-O., Scheffler, K., and Haller, S. (2012). Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks. Neuroimage, 63(4), 1775–1781.
  • Mueller, C., Luehrs, M., Baecke, S., Adolf, D., Luetzkendorf, R., Luchtmann, M., and Bernarding, J. (2012). Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments. Journal of Neuroscience Methods, 209(2), 290–298.
  • Jezzard, P. (2012). Correction of geometric distortion in fMRI data. Neuroimage, 62(2), 648–651.
  • Hampson, M., Scheinost, D., Qiu, M., Bhawnani, J., Lacadie, C. M., Leckman, J. F., … Papademetris, X. (2011). Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity, 1(1), 91–98.
  • Hampson, M., Scheinost, D., Qiu, M., Bhawnani, J., Lacadie, C. M., Leckman, J. F., … Papademetris, X. (2011). Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity, 1(1), 91–98.
  • Koush, Y., Elliott, M. A., and Mathiak, K. (2011). Single voxel proton spectroscopy for neurofeedback at 7 Tesla. Materials, 4(9), 1548–1563.
  • Shibata, K., Watanabe, T., Sasaki, Y., and Kawato, M. (2011). Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science, 334(6061), 1413–1415.
  • Jump to: fMRI EEG fNIRS MEG Mixed

    EEG

  • 🚨  Kober, S. E., Schweiger, D., Reichert, J. L., Neuper, C., and Wood, G. (2017). Upper Alpha Based Neurofeedback Training in Chronic Stroke: Brain Plasticity Processes and Cognitive Effects. Applied Psychophysiology and Biofeedback, 1–15.
  • 🚨  Enriquez-Geppert, S., Huster, R. J., and Herrmann, C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behaviour: a review tutorial. Frontiers in Human Neuroscience, 11, 51.
  • 🚨  Heidari, Z., Taremian, F., and Khalatbari, J. (2017). The Effect of Modified Alpha-Theta Neurofeedback Protocol on Instant Craving in Opioid Users. ZUMS Journal, 25(109), 130–139.
  • 🚨  Kalaivani, M., Jeyalakshmi, M. S., and Aarthy, M. T. (2017). Neurofeedback training for elderly with increased stress level. In Intelligent Systems and Control (ISCO), 2017 11th International Conference on, pages 129–133. IEEE.
  • 🚨  Kaur, C., and Singh, P. (2017). Toward EEG Spectral Analysis of Tomographic Neurofeedback for Depression. In Proceeding of International Conference on Intelligent Communication, Control and Devices, pages 97–103. Springer.
  • 🚨  Lee, E.-J., and Jung, C.-H. (2017). Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study. Asian Journal of Psychiatry, 25, 16–21.
  • 🚨  Alves-Pinto, A., Turova, V., Blumenstein, T., Hantuschke, C., and Lampe, R. (2017). Implicit Learning of a Finger Motor Sequence by Patients with Cerebral Palsy After Neurofeedback. Applied Psychophysiology and Biofeedback, 1–11.
  • 🚨  Fielenbach, S., Donkers, F. C. L., Spreen, M., and Bogaerts, S. (2017). Neurofeedback as a Treatment for Impulsivity in a Forensic Psychiatric Population With Substance Use Disorder: Study Protocol of a Randomized Controlled Trial Combined With an N-of-1 Clinical Trial. JMIR Research Protocols, 6(1), e13.
  • 🚨  Alkoby, O., Abu-Rmileh, A., Shriki, O., and Todder, D. (2017). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience.
  • 🚨  Mohagheghi, A., Amiri, S., Moghaddasi Bonab, N., Chalabianloo, G., Noorazar, S. G., Tabatabaei, S. M., and Farhang, S. (2017). A Randomized Trial of Comparing the Efficacy of Two Neurofeedback Protocols for Treatment of Clinical and Cognitive Symptoms of ADHD: Theta Suppression/Beta Enhancement and Theta Suppression/Alpha Enhancement. BioMed Research International, 2017.
  • 🚨  Mennella, R., Patron, E., and Palomba, D. (2017). Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behaviour Research and Therapy.
  • 🚨  Friesen, C. L., Bardouille, T., Neyedli, H. F., and Boe, S. G. (2017). Combined Action Observation and Motor Imagery Neurofeedback for Modulation of Brain Activity. Frontiers in Human Neuroscience, 10, 692.
  • 🚨  Fernández Thalı́a, Bosch-Bayard, J., Harmony Thalı́a, Caballero Marı́a I, Dı́az-Comas Lourdes, Galán Lı́dice, … Otero-Ojeda, G. (2016). Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement. Applied Psychophysiology and Biofeedback, 41(1), 27–37.
  • 🚨  Reichert, J. L., Kober, S. E., Schweiger, D., Grieshofer, P., Neuper, C., and Wood, G. (2016). Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study. Frontiers in Human Neuroscience, 10.
  • 🚨  Dupee, M., Forneris, T., and Werthner, P. (2016). Perceived Outcomes of a Biofeedback and Neurofeedback Training Intervention for Optimal Performance: Learning to Enhance Self-Awareness and Self-Regulation With Olympic Athletes. The Sport Psychologist, 30(4), 339–349.
  • 🚨  Lin, W.-L., and Shih, Y.-L. (2016). Designing EEG Neurofeedback Procedures to Enhance Open-ended versus Closed-ended Creative Potentials. Creativity Research Journal, 28(4), 458–466.
  • 🚨  Reis, J., Portugal, A. M., Fernandes Luı́s, Afonso, N., Pereira, M., Sousa, N., and Dias, N. S. (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in Aging Neuroscience, 8.
  • 🚨  Ford, N. L., Wyckoff, S. N., and Sherlin, L. H. (2016). Neurofeedback and mindfulness in peak performance training among athletes. Biofeedback, 44(3), 152–159.
  • 🚨  Gadea, M., Aliño, M., Garijo, E., Espert, R., and Salvador, A. (2016). Testing the Benefits of Neurofeedback on Selective Attention Measured Through Dichotic Listening. Applied Psychophysiology and Biofeedback, 41(2), 157–164.
  • 🚨  Liu, Y., Hou, X., Sourina, O., and Bazanova, O. (2016). Individual Theta/Beta Based Algorithm for Neurofeedback Games to Improve Cognitive Abilities. In Transactions on Computational Science XXVI, pages 57–73. Springer.
  • 🚨  Bink, M., Bongers, I. L., Popma, A., Janssen, T. W. P., and van Nieuwenhuizen, C. (2016). 1-year follow-up of neurofeedback treatment in adolescents with attention-deficit hyperactivity disorder: randomised controlled trial. British Journal of Psychiatry Open, 2(2), 107–115.
  • 🚨  Geladé, K., Bink, M., Janssen, T. W. P., van Mourik, R., Maras, A., and Oosterlaan, J. (2016). An RCT into the effects of neurofeedback on neurocognitive functioning compared to stimulant medication and physical activity in children with ADHD. European Child & Adolescent Psychiatry, 1–12.
  • 🚨  Deilami, M., Jahandideh, A., Kazemnejad, Y., Fakour, Y., Alipoor, S., Rabiee, F., … Mosavi, S. A. (2016). The effect of neurofeedback therapy on reducing symptoms associated with attention deficit hyperactivity disorder: A case series study. Basic and Clinical Neuroscience, 7(2), 167.
  • 🚨  Kim, J.-H., Park, E.-J., and Oh, N.-rae. (2016). Effects of neurofeedback training on life stress and depression in female college students. Journal of Digital Convergence, 14(3), 299–307.
  • 🚨  Geladé, K., Janssen, T. W. P., Bink, M., van Mourik, R., Maras, A., and Oosterlaan, J. (2016). Behavioral effects of neurofeedback compared to stimulants and physical activity in attention-deficit/hyperactivity disorder: a randomized controlled trial. Journal of Clinical Psychiatry, 77(10), e1270–e1277.
  • 🚨  Thibault, R. T., and Raz, A. (2016). Neurofeedback: the power of psychosocial therapeutics. The Lancet Psychiatry, 3(11), e18.
  • 🚨  Rozengurt, R., Barnea, A., Uchida, S., and Levy, D. A. (2016). Theta EEG neurofeedback benefits early consolidation of motor sequence learning. Psychophysiology, 53(7), 965–973.
  • 🚨  van Lutterveld, R., Houlihan, S. D., Pal, P., Sacchet, M. D., McFarlane-Blake, C., Patel, P. R., … others. (2016). Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation. NeuroImage.
  • 🚨  Ros, T., Frewen, P., Théberge, J., Michela, A., Kluetsch, R., Mueller, A., … Lanius, R. A. (2016). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex.
  • 🚨  Jensen, M. P., Gianas, A., George, H. R., Sherlin, L. H., Kraft, G. H., and Ehde, D. M. (2016). Use of neurofeedback to enhance response to hypnotic analgesia in individuals with multiple sclerosis. International Journal of Clinical and Experimental Hypnosis, 64(1), 1–23.
  • 🚨  Lackner, N., Unterrainer, H.-F., Skliris, D., Shaheen, S., Dunitz-Scheer, M., Wood, G., … Neuper, C. (2016). EEG neurofeedback effects in the treatment of adolescent anorexia nervosa. Eating Disorders, 24(4), 354–374.
  • 🚨  Gomez-Pilar, J., Corralejo, R., Nicolas-Alonso, L. F., Álvarez, D., and Hornero, R. (2016). Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Medical & Biological Engineering & Computing, 54(11), 1655–1666.
  • 🚨  Bluschke, A., Broschwitz, F., Kohl, S., Roessner, V., and Beste, C. (2016). The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Scientific Reports, 6.
  • 🚨  Bluschke, A., Roessner, V., and Beste, C. (2016). Editorial perspective: how to optimise frequency band neurofeedback for ADHD. Journal of Child Psychology and Psychiatry, 57(4), 457–461.
  • 🚨  Benioudakis, E. S., Kountzaki, S., Batzou, K., Markogiannaki, K., Seliniotaki, T., Darakis, E., … Nestoros, J. N. (2016). Can Neurofeedback Decrease Anxiety and Fear in Cancer Patients? A Case Study. Postępy Psychiatrii i Neurologii, 25(1), 59–65.
  • 🚨  Cheon, E.-J., Koo, B.-H., and Choi, J.-H. (2016). The Efficacy of Neurofeedback in Patients with Major Depressive Disorder: An Open Labeled Prospective Study. Applied Psychophysiology and Biofeedback, 41(1), 103–110.
  • 🚨  Pacheco, N. C. (2016). Neurofeedback for peak performance training. Journal of Mental Health Counseling, 38(2), 116–123.
  • 🚨  Micoulaud-Franchi, J.-A., and Fovet, T. (2016). Neurofeedback: time needed for a promising non-pharmacological therapeutic method. The Lancet Psychiatry, 3(9), e16.
  • 🚨  Hsueh, J.-J., Chen, T.-S., Chen, J.-J., and Shaw, F.-Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Human Brain Mapping, 37(7), 2662–2675.
  • 🚨  Gapen, M., van der Kolk, B. A., Hamlin, E., Hirshberg, L., Suvak, M., and Spinazzola, J. (2016). A pilot study of neurofeedback for chronic PTSD. Applied Psychophysiology and Biofeedback, 41(3), 251–261.
  • 🚨  Lackner, N., Unterrainer, H. F., Skliris, D., Wood, G., Wallner-Liebmann, S. J., Neuper, C., and Gruzelier, J. H. (2016). The effectiveness of visual short-time neurofeedback on brain activity and clinical characteristics in alcohol use disorders: Practical issues and results. Clinical EEG and Neuroscience, 47(3), 188–195.
  • 🚨  Zhigalov, A., Kaplan, A., and Palva, J. M. (2016). Modulation of critical brain dynamics using closed-loop neurofeedback stimulation. Clinical Neurophysiology, 127(8), 2882–2889.
  • 🚨  Surmeli, T., Eralp, E., Mustafazade, I., Kos, H., Özer, G. E., and Surmeli, O. H. (2016). Quantitative EEG Neurometric Analysis–Guided Neurofeedback Treatment in Dementia 20 Cases. How Neurometric Analysis Is Important for the Treatment of Dementia and as a Biomarker? Clinical EEG and Neuroscience, 47(2), 118–133.
  • 🚨  Mayer, K., Blume, F., Wyckoff, S. N., Brokmeier, L. L., and Strehl, U. (2016). Neurofeedback of slow cortical potentials as a treatment for adults with Attention Deficit-/Hyperactivity Disorder. Clinical Neurophysiology, 127(2), 1374–1386.
  • 🚨  Bauer, R., Fels, M., Royter, V., Raco, V., and Gharabaghi, A. (2016). Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clinical Neurophysiology, 127(9), 3156–3164.
  • 🚨  Marzbani, H., Marateb, H. R., and Mansourian, M. (2016). Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143.
  • 🚨  Thibaulta, R. T., and Raza, A. (2016). When can neurofeedback join the clinical armamentarium? Lancet, 3(6).
  • 🚨  Micoulaud Franchi, J., Geoffroy, P., Fond, G., Lopez, R., Bioulac10, S., and Philip11, P. (2016). EEG Neurofeedback treatments in 44 children with ADHD: An updated meta–analysis of Randomized Controlled Trials. Neurofeedback in ADHD.
  • Hernandez, L. D., Rieger, K., Baenninger, A., Brandeis, D., and Koenig, T. (2016). Towards using microstate-neurofeedback for the treatment of psychotic symptoms in schizophrenia. A feasibility study in healthy participants. Brain Topography, 29(2), 308–321.
  • Engelbregt, H. J., Keeser, D., van Eijk, L., Suiker, E. M., Eichhorn, D., Karch, S., … Pogarell, O. (2016). Short and long-term effects of sham-controlled prefrontal EEG-neurofeedback training in healthy subjects. Clinical Neurophysiology, 127(4), 1931–1937.
  • Janssen, T. W. P., Bink, M., Geladé, K., van Mourik, R., Maras, A., and Oosterlaan, J. (2016). A randomized controlled trial investigating the effects of neurofeedback, methylphenidate, and physical activity on event-related potentials in children with attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 26(4), 344–353.
  • 🚨  Habibollahi, S., Souri, A., Haji Arbabi, F., and Ashoori, J. (2016). Effects of neurofeedback training on sustain attention and planning in students with attention deficit disorder. Koomesh, 17(2), 447–454.
  • 🚨  Ashoori, J. (2016). The Effect of Neurofeedback Training on Anxiety and Depression in Students with Attention Deficit/Hyperactivity Disorders. Journal of Education And Community Health, 2(4), 41–47.
  • 🚨  Altan, S., Berberoglu, B., Canan, S., and Dane, Ş. (2016). Effects of neurofeedback therapy in healthy young subjects. Clinical and Investigative Medicine. Medecine Clinique Et Experimentale, 39(6), 27496.
  • 🚨  Lackner, N., Unterrainer, H. F., Skliris, D., Wood, G., Dunitz-Scheer, M., Wallner-Liebmann, S. J., … Neuper, C. (2016). Neurofeedback in the Treatment of Anorexia Nervosa: a Case Report. Fortschritte Der Neurologie-Psychiatrie, 84(2), 88–95.
  • 🚨  La Marca, J. P., and O’Connor, R. E. (2016). Neurofeedback as an Intervention to Improve Reading Achievement in Students with Attention Deficit Hyperactivity Disorder, Inattentive Subtype. NeuroRegulation, 3(2), 55.
  • 🚨  Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Théberge, J., Kluetsch, R. C., … Lanius, R. A. (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. NeuroImage: Clinical, 12, 506–516.
  • 🚨  Cowley, B., Holmström, É., Juurmaa, K., Kovarskis, L., and Krause, C. M. (2016). Computer enabled neuroplasticity treatment: a clinical trial of a novel design for neurofeedback therapy in adult ADHD. Frontiers in Human Neuroscience, 10.
  • 🚨  Schmidt, J., and Martin, A. (2016). Neurofeedback Against Binge Eating: A Randomized Controlled Trial in a Female Subclinical Threshold Sample. European Eating Disorders Review, 24(5), 406–416.
  • Zuberer, A., Brandeis, D., and Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9, 135.
  • Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., and Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of Neuroengineering and Rehabilitation, 12(1), 1.
  • Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., … others. (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Annals of Neurology, 77(5), 851–865.
  • Rogel, A., Guez, J., Getter, N., Keha, E., Cohen, T., Amor, T., and Todder, D. (2015). Transient Adverse Side Effects During Neurofeedback Training: A Randomized, Sham-Controlled, Double Blind Study. Applied Psychophysiology and Biofeedback, 40(3), 209–218.
  • Quaedflieg, C. W. E. M., Smulders, F. T. Y., Meyer, T., Peeters, F. P. M. L., Merckelbach, H. L. G. J., and Smeets, T. (2015). The validity of individual frontal alpha asymmetry EEG neurofeedback. Social Cognitive and Affective Neuroscience, nsv090.
  • Zich, C., Debener, S., De Vos, M., Frerichs, S., Maurer, S., and Kranczioch, C. (2015). Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study. Neuroimage, 116, 80–91.
  • Vukelić, M., and Gharabaghi, A. (2015). Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage, 111, 1–11.
  • Wang, Y., Sokhadze, E. M., El-Baz, A. S., Li, X., Sears, L., Casanova, M. F., and Tasman, A. (2015). Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 9.
  • Ros, T., Munneke, M. A. M., Parkinson, L. A., and Gruzelier, J. H. (2014). Neurofeedback facilitation of implicit motor learning. Biological Psychology, 95, 54–58.
  • Petrov, Y., Nador, J., Hughes, C., Tran, S., Yavuzcetin, O., and Sridhar, S. (2014). Ultra-dense EEG sampling results in two-fold increase of functional brain information. NeuroImage, 90, 140–145.
  • Gruzelier, J. H. (2014). Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback. International Journal of Psychophysiology, 93(1), 112–115.
  • So, K., Dangi, S., Orsborn, A. L., Gastpar, M. C., and Carmena, J. M. (2014). Subject-specific modulation of local field potential spectral power during brain–machine interface control in primates. Journal of Neural Engineering, 11(2), 026002.
  • Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686.
  • Chen, A., Yao, J., Kuiken, T., and Dewald, J. P. A. (2013). Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation. NeuroImage: Clinical, 3, 498–506.
  • Kober, S. E., Witte, M., Ninaus, M., Neuper, C., and Wood, G. (2013). Learning to modulate one’s own brain activity: the effect of spontaneous mental strategies.
  • Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., and Lanius, R. A. (2013). Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage, 65, 324–335.
  • Ramos-Murguialday, A., Schürholz, M., Caggiano, V., Wildgruber, M., Caria, A., Hammer, E. M., … Birbaumer, N. (2012). Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. PloS One, 7(10), e47048.
  • Friedrich, E. V. C., Scherer, R., and Neuper, C. (2012). The effect of distinct mental strategies on classification performance for brain–computer interfaces. International Journal of Psychophysiology, 84(1), 86–94.
  • Lance, B. J., Kerick, S. E., Ries, A. J., Oie, K. S., and McDowell, K. (2012). Brain–computer interface technologies in the coming decades. Proceedings of the IEEE, 100(Special Centennial Issue), 1585–1599.
  • Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., and Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity—implications for treatment of sensorimotor decline. Frontiers in Human Neuroscience, 6, 144.
  • Seth, S., and Principe, J. C. (2012). Assessing Granger non-causality using nonparametric measure of conditional independence. IEEE Transactions on Neural Networks and Learning Systems, 23(1), 47–59.
  • Schurger, A., Sitt, J. D., and Dehaene, S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of the National Academy of Sciences, 109(42), E2904–E2913.
  • Jump to: fMRI EEG fNIRS MEG Mixed

    fNIRS

  • 🚨  Liu, N., Cliffer, S., Pradhan, A. H., Lightbody, A., Hall, S. S., and Reiss, A. L. (2017). Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: methodology and initial data. Neurophotonics, 4(1), 011003–011003.
  • 🚨  Hosseini, S. M. H., Pritchard-Berman, M., Sosa, N., Ceja, A., and Kesler, S. R. (2016). Task-based neurofeedback training: A novel approach toward training executive functions. NeuroImage, 134, 153–159.
  • Kober, S. E., Wood, G., Kurzmann, J., Friedrich, E. V. C., Stangl, M., Wippel, T., … Neuper, C. (2014). Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biological Psychology, 95, 21–30.
  • Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T., Hino, T., and Miyai, I. (2013). Near-infrared Spectroscopy–mediated Neurofeedback Enhances Efficacy of Motor Imagery–based Training in Poststroke Victims. Stroke, 44(4), 1091–1098.
  • Mihara, M., Miyai, I., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T., … others. (2012). Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PloS One, 7(3), e32234.
  • Ferrari, M., and Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921–935.
  • Aqil, M., Hong, K.-S., Jeong, M.-Y., and Ge, S. S. (2012). Cortical brain imaging by adaptive filtering of NIRS signals. Neuroscience Letters, 514(1), 35–41.
  • Jump to: fMRI EEG fNIRS MEG Mixed

    MEG

  • Foldes, S. T., Weber, D. J., and Collinger, J. L. (2015). MEG-based neurofeedback for hand rehabilitation. Journal of Neuroengineering and Rehabilitation, 12(1), 1.
  • Okazaki, Y. O., Horschig, J. M., Luther, L., Oostenveld, R., Murakami, I., and Jensen, O. (2015). Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance. NeuroImage, 107, 323–332.
  • Merkel, N., Bland, G., Wibral, M., and Singer, W. (2015). Changing High Frequency Oscillatory Patterns in Early Visual Cortex with MEG Neurofeedback. In 6th European Conference of the International Federation for Medical and Biological Engineering, pages 930–933. Springer.
  • Charles, L., King, J.-R., and Dehaene, S. (2014). Decoding the dynamics of action, intention, and error detection for conscious and subliminal stimuli. Journal of Neuroscience, 34(4), 1158–1170.
  • Jump to: fMRI EEG fNIRS MEG Mixed

    Multiple modalities

  • 🚨  Moreno-Garcı́a Inmaculada, Meneres-Sancho, S., Camacho-Vara de Rey, C., and Servera, M. (2017). A Randomized Controlled Trial to Examine the Posttreatment Efficacy of Neurofeedback, Behavior Therapy, and Pharmacology on ADHD Measures. Journal of Attention Disorders, 1087054717693371.
  • 🚨  Blume, F., Hudak, J., Dresler, T., Ehlis, A.-C., Kühnhausen, J., Renner, T. J., and Gawrilow, C. (2017). NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials, 18(1), 41.
  • 🚨  Zotev, V., Misaki, M., Phillips, R., Wong, C. K., and Bodurka, J. (2017). Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm. ArXiv Preprint ArXiv:1702.04195.
  • 🚨  Thibault, R. T., Lifshitz, M., and Raz, A. (2017). Neurofeedback or Neuroplacebo?
  • 🚨  Mirifar, A., Beckmann, J., and Ehrlenspiel, F. (2017). Neurofeedback as Supplementary Training for Optimizing Athletes’ Performance: A Systematic Review with Implications for Future Research. Neuroscience & Biobehavioral Reviews.
  • 🚨  de Ruiter, M. A., Oosterlaan, J., Schouten-van Meeteren, A. Y. N., Maurice-Stam, H., van Vuurden, D. G., Gidding, C., … Grootenhuis, M. A. (2016). Neurofeedback ineffective in paediatric brain tumour survivors: Results of a double-blind randomised placebo-controlled trial. European Journal of Cancer, 64, 62–73.
  • 🚨  Serra-Sala, M., Timoneda-Gallart, C., and Pérez-Álvarez, F. (2016). Clinical usefulness of hemoencephalography beyond the neurofeedback. Neuropsychiatric Disease and Treatment, 12, 1173.
  • 🚨  Chapin, T. J. (2016). Developing a specialty in neurofeedback: Decision points. Journal of Mental Health Counseling, 38(2), 155–169.
  • 🚨  Sacchet, M. D., and Gotlib, I. H. (2016). Neurofeedback training for major depressive disorder: recent developments and future directions. Taylor & Francis.
  • 🚨  Perronnet, L., Lécuyer, A., Lotte, F., Clerc, M., and Barillot, C. (2016). Brain training with neurofeedback. Brain–Computer Interfaces 1: Foundations and Methods, 271–292.
  • 🚨  Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., and Vialatte, F. B. (2016). A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neuroscience & Biobehavioral Reviews, 68, 891–910.
  • 🚨  González-Castro, P., Cueli, M., Rodrı́guez Celestino, Garcı́a Trinidad, and Álvarez, L. (2016). Efficacy of neurofeedback versus pharmacological support in subjects with ADHD. Applied Psychophysiology and Biofeedback, 41(1), 17–25.
  • 🚨  Reiter, K., Andersen, S. B., and Carlsson, J. (2016). Neurofeedback treatment and posttraumatic stress disorder: Effectiveness of neurofeedback on posttraumatic stress disorder and the optimal choice of protocol. The Journal of Nervous and Mental Disease, 204(2), 69–77.
  • 🚨  Zotev, V., Yuan, H., Misaki, M., Phillips, R., Young, K. D., Feldner, M. T., and Bodurka, J. (2016). Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage: Clinical, 11, 224–238.
  • 🚨  Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D., … others. (2016). Neurofeedback for attention-deficit/hyperactivity disorder: meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child & Adolescent Psychiatry, 55(6), 444–455.
  • 🚨  Keynan, J. N., Meir-Hasson, Y., Gilam, G., Cohen, A., Jackont, G., Kinreich, S., … others. (2016). Limbic activity modulation guided by fMRI-inspired EEG improves implicit emotion regulation. Biological Psychiatry.
  • 🚨  Meir-Hasson, Y., Keynan, J. N., Kinreich, S., Jackont, G., Cohen, A., Podlipsky-Klovatch, I., … Intrator, N. (2016). One-class fMRI-inspired EEG model for self-regulation training. PloS One, 11(5), e0154968.
  • van der Meer, J. N., Pampel, A., Van Someren, E. J. W., Ramautar, J. R., van der Werf, Y. D., Gomez-Herrero, G., … others. (2016). Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections—A validation of a real-time simultaneous EEG/fMRI correction method. NeuroImage, 125, 880–894.
  • 🚨  Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., … Sulzer, J. (2016). Closed-loop brain training: the science of neurofeedback. Nature Reviews Neuroscience.
  • Basilio, R., Garrido, G. J., Sato, J. R., Hoefle, S., Melo, B. R. P., Pamplona, F. A., … Moll, J. (2015). FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies. Frontiers in Behavioral Neuroscience, 9, 3.
  • Hellrung, L., Hollmann, M., Zscheyge, O., Schlumm, T., Kalberlah, C., Roggenhofer, E., … Horstmann, A. (2015). Flexible adaptive paradigms for fMRI using a novel software package ‘Brain Analysis in Real-Time’(BART). PloS One, 10(4), e0118890.
  • Mayeli, A., Zotev, V., Refai, H., and Bodurka, J. (2015). An automatic ICA-based method for removing artifacts from EEG data acquired during fMRI in real time. In 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC), pages 1–2. IEEE.
  • Von Carlowitz-Ghori, K., Bayraktaroglu, Z., Waterstraat, G., Curio, G., and Nikulin, V. V. (2015). Voluntary control of corticomuscular coherence through neurofeedback: a proof-of-principle study in healthy subjects. Neuroscience, 290, 243–254.
  • Ruiz, S., Birbaumer, N., and Sitaram, R. (2014). Volitional control of neural connectivity. In Brain-Computer Interface Research, pages 63–74. Springer.
  • Narayana, S., Zhang, W., Rogers, W., Strickland, C., Franklin, C., Lancaster, J. L., and Fox, P. T. (2014). Concurrent TMS to the primary motor cortex augments slow motor learning. Neuroimage, 85, 971–984.
  • Nozari, N., Woodard, K., and Thompson-Schill, S. L. (2014). Consequences of cathodal stimulation for behavior: when does it help and when does it hurt performance? PLoS One, 9(1), e84338.
  • Lefebvre, S., Thonnard, J.-L., Laloux, P., Peeters, A., Jamart, J., and Vandermeeren, Y. (2014). Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabilitation and Neural Repair, 28(2), 100–110.
  • Leuze, C. W. U., Anwander, A., Bazin, P.-L., Dhital, B., Stüber, C., Reimann, K., … Turner, R. (2014). Layer-specific intracortical connectivity revealed with diffusion MRI. Cerebral Cortex, 24(2), 328–339.
  • Zotev, V., Phillips, R., Yuan, H., Misaki, M., and Bodurka, J. (2014). Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage, 85, 985–995.
  • Kaiser, V., Bauernfeind, G., Kreilinger, A., Kaufmann, T., Kübler, A., Neuper, C., and Müller-Putz, G. R. (2014). Cortical effects of user training in a motor imagery based brain–computer interface measured by fNIRS and EEG. Neuroimage, 85, 432–444.
  • Grefkes, C., and Ward, N. S. (2014). Cortical reorganization after stroke: how much and how functional? The Neuroscientist, 20(1), 56–70.
  • Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Di Pino, G., … others. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine, 6(222), 222ra19–222ra19.
  • Kaufman, M. T., Churchland, M. M., Ryu, S. I., and Shenoy, K. V. (2014). Cortical activity in the null space: permitting preparation without movement. Nature Neuroscience, 17(3), 440–448.
  • Clark, V. P., and Parasuraman, R. (2014). Neuroenhancement: enhancing brain and mind in health and in disease. Elsevier.
  • Brem, A.-K., Fried, P. J., Horvath, J. C., Robertson, E. M., and Pascual-Leone, A. (2014). Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? Neuroimage, 85, 1058–1068.
  • Fan, J. M., Nuyujukian, P., Kao, J. C., Chestek, C. A., Ryu, S. I., and Shenoy, K. V. (2014). Intention estimation in brain–machine interfaces. Journal of Neural Engineering, 11(1), 016004.
  • Grosse-Wentrup, M., and Schölkopf, B. (2013). A review of performance variations in SMR-based brain- computer interfaces (BCIs). In Brain-Computer Interface Research, pages 39–51. Springer.
  • Gruet, M., Temesi, J., Rupp, T., Levy, P., Millet, G. Y., and Verges, S. (2013). Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience, 231, 384–399.
  • Craddock, R. C., Jbabdi, S., Yan, C.-G., Vogelstein, J. T., Castellanos, F. X., Di Martino, A., … Milham, M. P. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539.
  • Chapin, H., and Mackey, S. (2013). A Transparent, Trainable Brain. Scientific American Mind, 24(1), 50–57.
  • Plichta, M. M., Wolf, I., Hohmann, S., Baumeister, S., Boecker, R., Schwarz, A. J., … others. (2013). Simultaneous EEG and fMRI reveals a causally connected subcortical-cortical network during reward anticipation. Journal of Neuroscience, 33(36), 14526–14533.
  • Nierhaus, T., Gundlach, C., Goltz, D., Thiel, S. D., Pleger, B., and Villringer, A. (2013). Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI. Neuroimage, 74, 70–76.
  • Richiardi, J., Achard, S., Bunke, H., and Van De Ville, D. (2013). Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Processing Magazine, 30(3), 58–70.
  • Halder, S., Varkuti, B., Bogdan, M., Kübler, A., Rosenstiel, W., Sitaram, R., and Birbaumer, N. (2013). Prediction of brain-computer interface aptitude from individual brain structure.
  • Silvanto, J., and Pascual-Leone, A. (2012). Why the assessment of causality in brain–behavior relations requires brain stimulation. Journal of Cognitive Neuroscience, 24(4), 775–777.
  • Weiss, M., and Lavidor, M. (2012). When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. Journal of Cognitive Neuroscience, 24(9), 1826–1833.
  • Polanı́a Rafael, Paulus, W., and Nitsche, M. A. (2012). Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PloS One, 7(1), e30971.
  • Goebel, R. (2012). BrainVoyager—past, present, future. Neuroimage, 62(2), 748–756.
  • Plenge, E., Poot, D. H. J., Bernsen, M., Kotek, G., Houston, G., Wielopolski, P., … Meijering, E. (2012). Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magnetic Resonance in Medicine, 68(6), 1983–1993.
  • Zatorre, R. J., Fields, R. D., and Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536.
  • Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73(1), 8–22.
  • Fox, P. T., and Friston, K. J. (2012). Distributed processing; distributed functions? Neuroimage, 61(2), 407–426.
  • Linden, D. E. J. (2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73(1), 8–22.
  • Behrens, T. E. J., and Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22(1), 144–153.
  • Zotev, V., Yuan, H., Phillips, R., and Bodurka, J. (2012). EEG-assisted retrospective motion correction for fMRI: E-REMCOR. NeuroImage, 63(2), 698–712.
  • Huster, R. J., Debener, S., Eichele, T., and Herrmann, C. S. (2012). Methods for simultaneous EEG-fMRI: an introductory review. Journal of Neuroscience, 32(18), 6053–6060.
  • Cloos, M. A., Boulant, N., Luong, M., Ferrand, G., Giacomini, E., Hang, M.-F., … Amadon, A. (2012). Parallel-transmission-enabled magnetization-prepared rapid gradient-echo T1-weighted imaging of the human brain at 7T. Neuroimage, 62(3), 2140–2150.
  • Fox, M. D., Halko, M. A., Eldaief, M. C., and Pascual-Leone, A. (2012). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage, 62(4), 2232–2243.
  • Koralek, A. C., Jin, X., Long II, J. D., Costa, R. M., and Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483(7389), 331–335.